skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pfaff, Wolfgang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnons, the quanta of collective spin excitations in magnetic materials, may enable functionalities, such as nonreciprocity and transduction in hybrid quantum devices. To assess the potential of such applications, it is necessary to understand magnon dynamics beyond the simple harmonic oscillator regime, where theory predicts effects like population-dependent damping and quantum fluctuations in the form of magnon shot noise. Probing these phenomena requires sensors with high sensitivity and the ability to resolve magnon properties across different excitation regimes. Here, we demonstrate accurate and sensitive detection of magnon population and decay over a wide range of occupation numbers. We use a superconducting qubit to probe magnons in a ferrimagnet over approximately 2000 excitations. Using qubit control and parametrically induced qubit-magnon interactions, we demonstrate few-excitation sensitive detection of magnons with a dynamic range of approximately 30 dB, and are able to accurately resolve their decay with few-ns sensitivity. These capabilities offer a powerful and practical technique for probing magnon dynamics in or beyond the linear regime over a wide range of excitations. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  2. Nonreciprocal microwave routing plays a crucial role in measuring quantum circuits, and allows for realizing cascaded quantum systems for generating and stabilizing entanglement between noninteracting qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and controllable directional elements. Here, we report the design and experimental realization of a minimal controllable directional interface that can be directly coupled to superconducting qubits. In the device presented, nonreciprocity is realized through a combination of interference and phase-controlled parametric pumping. We have achieved a maximum directionality of around 30 dB, and the performance of the device is predicted quantitatively from independent calibration measurements. Using the excellent agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface with inefficiencies at the 1 % level or below. Our work offers a promising route for realizing high-fidelity signal routing and entanglement generation in all-to-all connected microwave quantum networks, and provides a path for isolator-free qubit readout schemes. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong implications for applications in quantum information science. Here, we study the limits of entanglement stabilization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss limits the degree of entanglement in this driven-dissipative system, and they offer important guidance for remote entanglement stabilization in the laboratory, for example using superconducting circuits. Published by the American Physical Society2024 
    more » « less
  4. We derive an exact solution for the steady state of a setup where two X X -coupled N -qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative X X spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED. Published by the American Physical Society2024 
    more » « less
  5. Abstract One of the primary challenges in realizing large-scale quantum processors is the realization of qubit couplings that balance interaction strength, connectivity, and mode confinement. Moreover, it is very desirable for the device elements to be detachable, allowing components to be built, tested, and replaced independently. In this work, we present a microwave quantum state router, centered on parametrically driven, Josephson-junction based three-wave mixing, that realizes all-to-all couplings among four detachable quantum modules. We demonstrate coherent exchange among all four communication modes, with an average full-iSWAP time of 764 ns and average inferred inter-module exchange fidelity of 0.969, limited by mode coherence. We also demonstrate photon transfer and pairwise entanglement between module qubits, and parallel operation of simultaneousiSWAP exchange across the router. Our router-module architecture serves as a prototype of modular quantum computer that has great potential for enabling flexible, demountable, large-scale quantum networks of superconducting qubits and cavities. 
    more » « less